
Agile practices in a traditional
environment

Markus Gärtner

September 5, 2009

Abstract

While Agile Practices and their underlying principles and values improve Agile teams,
their use in non-Agile environments also help traditional teams improve their process and
working-habits. This paper gives an overview of Agile practices that helped in a non-Agile
environment. From my two years of experience as a QA group lead in a more traditional
environment I will report about the change process towards more successful projects mo-
tivated by the testers. Practices like test-driven development, exploratory testing and Ag-
ile planning applied in the right way help testers of traditional teams succeeding on a
technical basis. Improved communication through personal touch as well as whiteboard
discussions help overcoming human bottlenecks. Based on examples from a real world
case study, I show how we overcame process thinking and contract negotiations without
explicitly using the term Agile.

1 Introduction

In order to introduce you to the situation in
more depth and make the following approach
reasonable, this section outlines the histori-
cal view right before introducing some Agile
practices.

During 2007 my company was bringing a
new product to the market. Over two years
had been spent on developing the product. It
consists of three major sub-components writ-
ten in three different programming languages
and using different architectures. It has the
ability for extensive customization. During
our first customer project, I was a member
of the testing team for the customizations that
provided plug-ins and customized API calls.

My company was following a waterfall-like
approach to software development. Develop-
ment activities were planned separately from
the testing activities in a phased way. Our
programmers wrote the applications and used
some developer tests before the software got
to the tester. The testers were responsible for
testing the software applications, bringing in
test automation, which was then used to exer-
cise the software before and after it has been
built by another group which was responsi-
ble for creating the releases in order to deliver
them to the customer. Over time this had led
to a high separation of the programming and
the testing process.

Based on my previous work we had stuck

1



to an approach using chained tests that pre-
pared test case preconditions using other tests.
Since this strategy led to slow tests we had an
18 hours painful process each time we needed
to execute the regression test suite. We com-
pensated this by having the tests run in paral-
lel over night. The chained test approach also
resulted in hard to reproduce test cases. Our
mean time for having one test executed using
this automation approach was down to around
an hour. The feedback time for our develop-
ers was therefore very long since usual regres-
sions involved at least ten tests to execute be-
fore a conclusion could be made. Additionally
the tests were fragile due to data-sensitivity
on the external interfaces of the application.
Since most of the external communication
to other sub-components was simulated the
tests had to deal with preparing the simulators
properly prior to triggering the system. Af-
terwards all received requests were checked
from the simulators as well. This led to the sit-
uation that for example whenever something
changed regarding balance handling, we had
to adapt a vast amount of test cases that in-
volved communication to the subsystem re-
sponsible to maintain the balances. Most of
our testing was achieved using test automation
by shell scripts. Since we were able to test be-
hind the GUI, there were little to no manual
testing activities.

My company decided to implement a new
department for customizations for the product
and I was asked to be a group leader for test-
ing in the new department. Until then we had
twelve testers busy with maintaining our test
automation on that project. After the switch to
the new department I was going to keep four
testers plus myself. Therefore it was clear to
me, that I needed to research improvements
regarding our approach to testing. In addition
our old approach was suffering due to a lack
of design. This issue needed to be addressed
in the new approach as well.

2 Decision making

Immediately after being appointed I started
to read about different approaches. Since our
legacy test automation had a lack of design I
began with the well-known Design Patterns
from Gamma et al [GHJV95]. While it gave
me a very good starting point, I came to the
understanding that test automation is software
development. Therefore we would need to ap-
ply established development practices. I be-
came increasingly excited with Agile method-
ologies and the underlying practices. Com-
ing from a waterfall-like approach, the ques-
tion that drove me was: "If Agile teams de-
liver successfully and often then how can Ag-
ile testers keep up the pace?"

Researching over this topic I went di-
rectly into the Framework for Integrated Tests
(FIT) [MC05]. After reading the book, I
wasn’t quite convinced about it, but it seemed
promising. On the other hand there had been
about a quarter of a year passed since I started
to research new opportunities in order to get
our current testing approach from a ten person
maintenance job to an approach that barely
four to five people could handle. So, time
pressure was slowly increasing.

During early 2008 I found a book which
was being written at that time. It dealed with
an answer about the initial question that drove
me. Lisa Crispin and Janet Gregory had put
early draft chapters from their upcoming book
Agile Testing [CG09] on the internet and I vol-
unteered to give them feedback on the content
while I was learning from the experts.

From the insights I got from these early
draft chapters, I was able to realize, that I
needed to raise the point to the whole team.
Therefore I sat back together with my four
colleagues on the issue we were facing and we
started a conscious decision process. There
were three alternative approaches that we had
identified and considered:

2



1. Implement a test automation approach
using the legacy approach anew thereby
overcoming the problems we intro-
duced initially resulting in high test
maintenance cost and the like.

2. Stick with a solution provided by one of
the external companies we were work-
ing with. Based on JMeter they had
brought up a testing framework for our
product, which had benefits over the
shell-script based approach, but also
some drawbacks.

3. Implement a test automation approach
on the basis of FIT.

Just shortly before I had been introduced
into a systematic way to make decisions.
We identified relevant aspects for our new
testing approach. Among these were issues
of traceability, maintainability, reproducibil-
ity and test execution times. Each aspect was
weighted against the other and after that we
tried to assign numbers of fulfillment for each
of the three identified alternatives. In the end
we had a numerical indicator for each of the
three alternatives

Based on our bad experiences the first al-
ternative ended up with the worst results. The
drawbacks of the second one seemed to be too
big in the medium- or even long-run. The ap-
proach based on the Framework for Integrated
Tests had the best results. Since our com-
pany is working mostly globally all across the
planet it seemed to be a wise decision to in-
troduce FIT using FitNesse [FN]. The wiki-
style editing and the possibility to execute
tests over the web browser was a promising
choice.

At that time it was clear to me that just
bringing in some green field test automation
would not be enough in the long-run. Im-
provements on the team structure and how we
had been working together were necessary as

well. On the other hand we just had one team-
mate with a background in programming. No
one had real experiences with the framework,
so the conversion effort would be a challenge
for the whole team.

3 Introducing
improvements

Having read enough about teams and working
together I raised a point about the testing is-
sues we were facing. The Agile testing quad-
rants (see Figure 1, [Mar04]) were a good ba-
sis for this. First of all I introduced the quad-
rants as two axes of a graph to the team. Then
I asked the question where on this graph our
current approach to test automation was posi-
tioned. Just considering the technology-facing
to business-facing axis the team responded we
were more technology-facing than business-
facing. For the next step I asked the question
what they thought we should do. The answer
was a clear movement into the business-facing
direction (see Figure 2). However, this discus-
sion led to some drawbacks. If my team was
focusing on business-facing tests, there proba-
bly would be a gap of technology-facing tests.
This made me introduce our intent to our de-
velopers.

Figure 1: The Agile Testing Quadrants

Unfortunately I could not sell the implica-
tions of the business-facing approach to them.

3



When focusing on more business-facing tests,
there is a high risk regarding the inner qual-
ity of the software. The Agile Manifesto pre-
scribes "Individuals and interactions over pro-
cesses and tools" and focuses on team think-
ing. Therefore I would have liked to inten-
sify closer collaboration between developers
and testers in the overall improvement project.
However, I discovered that the developers
were not going to support our new testing
approach since they had enough work to do
with developing the customizations and did
not want the extra burden with our testing is-
sues. In addition my suggestion for intensify-
ing low-level unit tests kept unaddressed. We
needed to establish this new approach exclu-
sively with with testers in the team.

Target for the
new approach

Evaluation of
the initial test
approach

Technology−facing

Business−facing

Figure 2: The identified target for the new test
automation approach

The mission at hand was to work more ef-
fectively regarding test automation. There was
a clear problem with the feedback times for
our development team to succeed and the first
set of improvements needed to address this
issue. During my research I had crossed an
add-on component for our product which was

initially used for migrating old data from a
legacy system to our new one. The interface
makes use of describing a whole data struc-
ture in XML and thereby is able to replace
seven or eight calls to the finer grained stan-
dard API. Using a spike solution I had already
shown that we could improve significantly by
making use of this additional component.

In addition we also needed to change how
we had worked together in the past. Since I
was dealing with The Art of Agile Develop-
ment [SW07] at that time, I was influenced by
the eXtreme Programming practices that are
described in the book. This led to the first set
of practices we followed. The book describes
several improvements on the team morale that
these Agile practices address. The team had
just been working through a hard project and
I wanted to protect my colleagues from this
kind of situation in the future.

3.1 Iteration 1 – The Beginning
A team-based approach was the only alter-
native I considered. From the past I knew
that we ended up with specialized areas of
the business logic. We had one testing ex-
pert for balance-related behavior, one for the
lifecycle-related areas, etc. In the past year
this caused severe problems during vacations.
In addition the project team helped out on-
site at the user acceptance test team. For
instance during one vacational leave of our
balance-related specialist the behavior was
overworked. During that time we had to keep
our development groupleader patient until our
expert got back from vacation. In order to re-
duce such bottlenecks we agreed on the Col-
lective Code Ownership paradigm. Everyone
should be able to get introduced to a certain
area of the system as easily as possible and
make corrections if the situation demanded
for it. Human singletons should never occur.
The expressivity of FIT-based tests helped a

4



lot here, too.
We already practiced version control usage

and a build that executed on a single com-
mand. However we didn’t execute the whole
regression test suite automatically since it
took about 18 hours to finish in the legacy
approach. Therefore we also did not do con-
tinuous integration in an optimal way. In or-
der to get an Informative Workspace, I or-
dered a huge whiteboard for our office. We
were already sitting together, so there were
just little improvements necessary regarding
osmotic communication [Coc06].

In the beginning we started off by identi-
fying the most risky parts of the system. We
knew that maintaining these risky parts in the
legacy test system was a cumbersome task
and as soon as we could free ourselves from
the high maintenance costs in these areas, the
biggest time-savings would be possible. Since
we knew the system pretty well after having
dealt with it for more than a year, we sat to-
gether and went through a risk analysis. We
started the overall progress of the new test ap-
proach by focusing for the first six weeks on
the most risky parts of the system. We were
able to identify three areas, where the biggest
improvements could be achieved thereby free-
ing us from the burden of maintaining the old
test cases in parallel. After two weeks we held
a retrospective and identified how to improve
our process.

After the first six weeks we had grown a
testing framework, in which we were able to
cover most of the risky use cases of our sys-
tem. In order to get upper management buy-in
I decided to hold a demo to my direct supe-
rior and some colleagues on the same man-
agement level as I am. I presented the sys-
tem and received some skepticism about it.
One reply was about language issues like slow
test execution times. This one we had already
dealt with by using the add-on component.
We were able to create all necessary data for

one test in less than ten seconds which had
taken us in the previous approach about an
hour. Another problem addressed the raised
skill-profile regarding testers. By sticking to
an approach that involved development work
using a programming language the currently
employed testers possibly could not be able to
make necessary adaptations on the underlying
fixtures. During the next few weeks we tried
to compensate for this in our work.

3.2 Iteration 2 – The
Cooperative Game

Early on I had noticed some potential prob-
lems with our approach. We practiced reg-
ular refactoring but without the support of
unit tests. Since we were not practicing test-
driven development up to that point we pos-
sibly were running into the same problems as
before. It was clear for me that we needed to
communicate our intents to the next genera-
tion of testers using unit tests. The Coopera-
tive Game [Coc06] had made me aware of this
issue.

Therefore I started to look into xUnit Test
Patterns [Mes07] and was surprised to find
descriptions of our previous flaws in the chap-
ter on Test Smells. After being introduced to
JUnit I was able to write clear tests which
communicated my intentions even for the next
person to work on the code. Slowly we im-
proved our code applying the boy scout rule
("Leave the campground cleaner than you
found it."). Regularly refactoring the code
helped there, too. Among the team were about
two and a half practicing programmers by that
time. We stuck to a collaboration mode in
which the less experienced programmers were
preferably writing test pages. Occasionally we
practiced Pair Programming with less experi-
enced colleagues when introducing new fea-
tures into the fixture code. Thereby we were

5



able to involve everyone from the team based
on their particular skill profile.

In addition we automated our unit tests and
incorporated them into Cruise Control [CC],
the continuous integration framework that
was set up about one year earlier by the group
responsible for releasing the software pack-
ages.

In the meantime we had been introduced to
another major project. Since we were not fin-
ished with our test conversion we had to deal
with the project organization and the conver-
sion in parallel. This increased the pressure on
each colleague in my group. We made the de-
cision to implement all up-coming tests for
the project using our new FIT approach. In
parallel we put aside one sacrificial lamb that
was responsible to execute the legacy tests. If
time permitted we were working on convert-
ing other tests, but this was the exception.

By that time we had already converted a
majority of our old test cases, but we still
needed to run our slow shell-script based
tests with every new delivery to our customer.
About each second week there had been a de-
livery to production. This meant we needed to
execute them at least twice in two weeks. By
focusing on the risky parts of the system and
also the tests that had the biggest problems in
the old approach we were steadily improving,
but the sooner we could finish converting all
test cases we would save that time. The legacy
test suite wasted a vast amount of our time
based on efforts necessary for test result eval-
uation. For each delivery we were put under
high pressure to make an informed decision
about whether or not to deliver.

3.3 Iteration 3 – Wrap-up
At some time in the middle of the third block
of six weeks there happened a miracle. The
project that had come across was put on hold
as we had to wait for a major delivery from

our product development department. There
were about twelve gaps which needed to be
filled before we could go on with it. At this
time we decided to track the remaining con-
version efforts on our whiteboard. We identi-
fied all the open points that still had not been
converted. By bringing these up in a visual
way it was also more motivating to deal with.
In the last week I remember one colleague
finishing the cards on the board in almost no
time. Every time I came back from my meet-
ings there was another card finished by him.
In the end we were able to finish the conver-
sion in about 18 weeks overall.

The team-based approach significantly led
to a success. On the technology side we had
exchanged a script based approach by one
based on a programming language. By stick-
ing to a simpler API for introducing test-
relevant data into the system we were able to
create all preconditions in about ten seconds
which took previously about an hour. But the
fashion how my colleagues had been working
as a team made us responsive to the miracle
of the project that was put on hold. We already
had some business-facing tests automated that
verified the risky parts of the system. The un-
risky parts needed to be exercised from time to
time when a new maintenance patch was de-
livered to our customer. The team took the op-
portunity to work down the backlog in order
to be prepared for the time when the project
was resumed. Using a visual story board for
this was the best thing to do.

Before the summer vacation times, I real-
ized that there were some open ends, which
needed to be filled. First of all in order to get
everyone into practicing test-driven develop-
ment on the testing team I decided to pair pro-
gram with my colleagues more regularly. We
followed ping-pong programming, where the
keyboard gets handed over whenever the pre-
vious unit test was made passing and the next
one had been written. Beside the fact that this

6



is fun it also helps to introduce the program-
ming language. On another side this improved
our unit tests and I was able to introduce my
colleagues into JUnit as a side effect.

The next thing I had to wrap-up was the
way we had built our system. Next on our
agenda was to convert our efforts in a way to
make them applicable for the next customer.
Early on we had been growing a framework
by putting functions that were most likely to
be useful for the next project into a reusable
component. Therefore we already had been
growing a test framework which was ready to
be taken out of the box with just some minor
efforts for the next project.

4 Outcome

4.1 First-class citizens

During the summer vacations in 2008 we were
able to run the group for about one week with
just one and a half persons, while the remain-
ing colleagues left. The business-facing as-
pect of our test approach had made us ag-
ile so we could keep the pace. It was dur-
ing this time that the developer’s group leader
had a question on how the software currently
was implemented. He had prepared seven ex-
amples for a particular use case in our sys-
tem, where he wanted to get customer feed-
back about the correctness of the current im-
plementation. He came with this list of ex-
amples into our office and asked if someone
could give him answers on these. One year
earlier it would have taken us about one to
two weeks to get results on these seven exam-
ples. With our new approach it was possible
to answer his list in less than 15 minutes. We
testers eventually had become first-class citi-
zens compared to our previous struggles.

4.2 Serving the project

During 2009 I realized the impacts of our ap-
proach. My team was brought into a project
which had been working for about half a
year by then. It was an internal project and
the requirements were pretty stable. Our cus-
tomer was part of the marketing department
so we could regularly get together and clarify
open points. At the time we started to work
on that project the requirements were well-
known which gave us an advantage. There
was practically no test automation done at that
time and the project was under pressure to
conclude with a user acceptance testing phase
together with the customer. There had been
many attempts previously to finish this off.
We were given three weeks until the project
should be brought to an end.

In order to get familiar with the business
model of our customer and to bring the project
forward we started with pure manual ex-
ploratory testing activates. This stressed out
the still open bugs and kept up with the bug
fixing rate of our development team. On the
other hand this gave us the opportunity to get
to know the business rules and understand the
context of the project better.

At the end of the first week I was getting
impatient. The tests I was exercising were
pretty much the same all the time and test
automation would really help us. Therefore I
sat together with the other tester that was as-
signed to this project and we agreed to start
the test automation approach by the beginning
of the next week. Since we knew pretty well
which elements needed to be tested and how
much remaining work was waiting for us we
were quite confident to finish this with about
one month of effort. The only uncertainty for
us was the new context.

At the beginning of the next week we sat
together and identified elements of the project
we were going to test. We decided to plan test

7



development work and fixture development
work separately. In the end we estimated and
prioritized the stories we had identified and
compiled together our story board for the next
few weeks. We decided to track our progress
on a burn-down chart [Coh05]. Initially we
had 24 story points of work in front of us.
While working on the stories we had to ex-
tend the scope by another two story points. In
the end we were able to use our previously
built framework as a basis for the testing ac-
tivities. We got test automation in place in just
two weeks having only one and a half people
working on it.

5 Conclusion

Agile practices and thinking help even in a
more traditional environment. Local changes
using Agile practices can improve the situa-
tion. This may raise attention for the Late Ma-
jorities [RM04] as well. Early feedback and
regular reflection over the course build the ba-
sis for Agile methodologies. These principles
also help in other contexts. Taking little steps
like refactoring and test-driven development
and small process improvements help to ad-
dress impediments step by step and manage
risks wisely. By making sure to involve ev-
eryone the best results can be achieved. This is
even true if the feedback you get is more skep-
tic than supportive. The introduced case study
shows that Agile practices can be used even
for non-Agile teams. Even if the approach did
not attract other teams immediately the learn-
ing I was able to make during this time was
worth the whole effort.

A team can make itself amenable to mir-
acles or not. By addressing high value/high
risk, working with feedback and getting to sta-
ble points often, a team can appear to make
opportunities when in reality, those opportu-
nities are always there. A team just needs to

be able to have just enough breathing room to
be able to see them and take advantage. Regu-
lar reflection and involving everyone into de-
cisions and improvements aids in the quest.

References

[CC] Cruise control.
http://cruisecontrol.sourceforge.net/.

[CG09] Lisa Crispin and Janet Gregory.
Agile Testing - A Practical Guide
for Testers and Agile Teams.
Addison-Wesley, 2009.

[Coc06] Alistair Cockburn. Agile Software
Development - The Cooperative
Game. Addison-Wesley, second
edition, 2006.

[Coh05] Mike Cohn. Agile Estimation and
Planning. Addison-Wesley, 2005.

[FN] Fitnesse - the fully integrated
standalone wiki, and ac-
ceptance testing framework.
http://www.fitnesse.org.

[GHJV95] Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlis-
sides. Design Patterns - Elements
of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

[Mar04] Brian Marick. Ag-
ile testing directions.
http://www.exampler.com/old-
blog/2004/05/26/, 2004.

[MC05] Rick Mugridge and Ward Cun-
ningham. FIT for Developing
Software - Framework for Inte-
grated Tests. Prentice Hall, 2005.

8



[Mes07] Gerald Meszaros. xUnit Test Pat-
terns - Refactoring Test Code.
Addison-Wesley, 2007.

[RM04] Linda Rising and Mary Lynn
Manns. Fearless Change - Pat-
terns for Introducing New Ideas.
Addison-Wesley, 2004.

[SW07] James Shore and Shane Warden.
The Art of Agile Development.
O’Reilly, 2007.

9


	Introduction
	Decision making
	Introducing improvements
	Iteration 1 – The Beginning
	Iteration 2 – The Cooperative Game
	Iteration 3 – Wrap-up

	Outcome
	First-class citizens
	Serving the project

	Conclusion

